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An important open problem concerning the approximation of bivariate functions
by separable functions is whether the tensor-product subspace,

CSY®H + GRC(T),

is proximinal in C(Sx T'), when H and G are Haar subspaces of (1) and C($).
respectively. In the present paper, we prove that, in general, this subspace is not

proximinal. 1990 Academic Press. Inc.

1. INTRODUCTION

In a normed linear spacc, any eclement possesses an element of best
approximation in any finite-dimensional subspace. This is often not the

case if the dimension of the subspace is infinite.

In this paper we consider the linear space C(SxT7T) of real-valued
continuous functions on the unit square [ ~1, 1] x [ —1, 1] endowed with

the uniform norm, where S=7=[~1,1].
It has been shown by Diliberto and Straus [3] that the subspace

(x()+pr)x, yeCl—1 13}
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is proximinal in C{Sx 7). The same is true for the subspaces

{.\‘(s)—i- Yol ) 1y e v, €CL—1 1]}

j=1

(see Cheney and Respess [2]).

In this paper we shall construc t a function f € C(S x T} which does not
have an element of best approximation {with respect to the uniform norm)
in the subspace

W=CSI®H+GRO(T) {1.1)

when H and G are taken to be the 2-dimensional spaces of polynomials of
degree 1. In this case, the elements of I have the form

w{s, 1) = Xols) 4 13, () 4+ volt) + 51, (2), with x, € C(S), y,eC(T).

Earlier, one of the authors [4] has shown that any function f'in C(Sx T)
has a best approximation in W if the partial derivative {f/ds exists at the
boundary points (1, 7), 7€ T and (f/ds)(1,- Y e C(T).

It is also known (see Cheney and v. Golitschek [1]) that the subspace

Wi =1L (SIQH+G®I.(T)

is proximinal in 7/ {Sx T). Furthermore, if H and G are 2-dimensional
spaces of polynomials of degree 1. and f is an element of C(SxT), it
possesses at least one best approximation win / (SY® H+G®/,(T) that
is continuous on the interior of Sx T

2. CONSTRUCTION OF THE FUNCTION [

We start by defining the function fon the set 4 x 4 where A= {4,}" ,
is given by 4, =1-27,j=0, 1. 2, ... We set

J10,0)=0,  f(2,,0)=-3,  f(4,,0)=3,
3, A0, 4)=3, S0, 4= -3,
J4.0)=f10.2,)=0, =23,

S A)=(=1Y (1 =)+ (=1 (1—=4)

for jzli=j+1landi=j+2,

G i) =(—1) (A;—2) for j=1.i=/+3,

fUni)=0  for j=21<i</

We extend fonto [0, 1T1x [0, 1] as follows.
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First, for j=0, 1, .., f(-, 4} is linear in each of the intervals 4, <s< 4, .
i=0, and continuous on [0, 1). Then, for each se [0, 1), f(s,-) is again
defined by linear interpolation of the values f(s, 4,), f{s,4;.,) in the
intervals /4, <r<4;, . j=0.

Finally we set

S0, 1)y=/(1,0)=f(1, 1)=0,

(2, 1H)=0 for iz,

S A)=(=1)Y (4 —1) for j=1,
and again define f(1,-) and f(-, 1} by linear interpolation of the values in
the intervals /£, <r<4,, |, and 4, <5</, ;. /20, =0, respectively.

It is easy to confirm that / is continuous on [0,1]x [0, 1], even

Lipschitzian, and that f(s,0)= —f(0,s). 0<s< 1. Therefore, f can be
uniquely extended on the square [ —1, 1] x [ —1, 1] such that the identity

f(s, 1y=—f{t, —s), (s, 1)eSxT (2.1)

holds. Also we note that (2.1) implies f(s, /)= f(~s, —1})= — f(—1,5). The
function f'1s continuous on S x 7T, even Lipschitzian.

3. THE APPROXIMATING FUNCTION

Let x and » be the bounded functions on [—1,1], continuous on
(—1, 1), which have the following properties.

X(0)=x(1)=0, x(A,)=(=1)"" i=1,
x is linear on each interval [/, 4,,,], i=0,
xisevenon [ —1, 1],
visodd on [—1, 1] and y(¢t)= —x(¢) for 0t < 1.
We define the approximating function by
wis, 1)=x(s)— x(2) +sy(1) + tv(s), (s,1)eSxT. (3.1)
Clearly, w has (as /) the property
wis, 1)= —w(t, —s), (s, 1)e SxT. 2.1y
We claim that

| f+w|<2 (3.2)
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is valid on [ =1, 1] x [ —1, 1]. Indeed, we have for F:=f+w
F(4;,0)= -2, F(4,.0)=2,
F0, 4)) =2, F(0, /5) = —2,
Fla,, 2,)=2, since 4= 1/2and y(4,)= —1
F(0,0)=0, F(A,,0)=w(,,0)=(—1)""fori=3.
Forjz1,i=j+1, and i=j+2, one gets
wii,, 2 =(1 —/l/)(ﬁl)f“ — L) =1y
and thus
Fla,a)=2(=1), i=j+1i=j+2,j>1
Forjz=1, iz j+ 3, we have
V(AL A = [(=1) (A, — A, +w(d,, 1))
=1/ (I+2)+ (=1 (1-4)1<2,

and for /=2, 1 <i<,

\F(A 2 = wli, ) < 1— i+ 144 <2,

(3.4)

where the last inequality follows since 4,</; for i< Hence we have

proved that |F(s, )] <2 on 4 x A.
On the boundary, we have

F(1,0)=F(0, 1)=F(1,1)=0,
F(i, 1y=w(i, 1)=0, ix1,
IF(L ) = 1(= 1) (2, = D)+ (1, 2,)]
= (=1 — D) +2(=1Y]

=l+il<2 =1

By the definition (3.1), each of the functions w(-, t), 0<r< 1, is linear in
A S<s< A4, 120, and each of the functions w(s,), 0 < s< 1, is linear in

A4, <UL /4; , j=0. Since f has the same property, it follows that

[F(s, 1) <2 on [0,1]x[0,1].

Finally, since f and w have the property (2.1), we have even established

thaton [—1,1]x[—1,1]}
If+wl|=2.

(3.6)
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4. FAILURE OF PROXIMINALITY

We will prove in two ways that there does not exist a function w*e W,
such that

I +wHi<2 (4.1)

Suppose that there exists such a continuous w*. Since f has the property
(2.1), there aiso exists a continuous function (again called w*) which
satisfies (2.1) and (4.1). Indeed, if w is a continuous function such that
|l £+ w| < 2. then define w* by setting

w*(s, 1) = %[W(s, HD+w(—s, —1)—w(, —s)—wl—1ts)].

It follows that w*(s, 1)=w*(—s, —1)= —w*(r, —s)= —w*(—1t,5). Since [
also has these properties from (2.1), we see easily that ||/ + w*| <2. Let
wis, 1) =xo(8)+ 1x,(s}+ yo(1) + s3,(1), then by definition of w*,

w¥(s, 1) = 44 [xals) + x0—5) — yols)— vl —=9)]
— [xplt) +xol—1) = volt) — vl —1)]
+s[x)+vi)—x(—t)—r(—=1]
F X ()4 vy () =X (=)= v (=5 ]
thus if we define
()= 5 Lxols) 4 ol =) = o(s) = yol =)
vEs) = L)+ y(s) =X —s)— v =) ],
w* is then of the form
wX(s, 1) = x*(s) — x*(£) + sv*(1) + 1v*(s), —1<s,1<1 (4.2)

and x*e C[—1,1] is even, y*e C[ —1, 1] is odd, hence y*(0)=0. and
without loss of generality, x*(0)=0.

There are two ways to show that w* cannot be continuous at
(s, 1)=(1, 1).
A. The First Method of Proof

Let w be the function in Section 3 and consider the function = :=w —w*,
Because of (3.1) and (4.2), =z is also of the form

Z(s, ty=uls) —u(t) + se(r) + tols)

with bounded functions u and ¢.
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Let us denote u,:=u(4,) and v, :=0v(4;). Then we have u,=1,=0, and
(3.3, (3.5), (4.1) imply

z(A4,,0)<0
(45, 0)
(4. 4) =20
(— 1) z(4, 1. 4) =0, (=1) z(4;, 5. 2,20, for j= 1.

These inequalities are equivalent to

u, <0,
1, =20,
v, =0, (4.3)
(A, A =us—uy F Asey + A0, <0
which implies v, <0.
(=1 (u; =1, + 4, 0+ A0,,5) 20, jz1,  (44)

(=Y =y 2 v+ A0 0) 20, j=1.  (45)

The sum of (4.4) and (4.5) is

(=1 Q=+ 45000, =7, av 0+ 4, — 4,0 ]0,0) 20,

which implies the inequalities

(—1) . .
(=Y v,y S———(u;,, —u, + 2,50, —/.,-Hzr/lﬂ), j=z1. (4.6)

lio1—4

The inequality (4.4) implies

(_1)/u/+2>(—1)/(u/*;“/+2Ui7;‘/l’./+2}’ /21 (47)

It is now easy to show that all #; and v, have to vanish: By (4.3), (4.6),
(4.7) it follows (by induction) that (—1)’'v, <0, (—=1)’u; 20, for all j> 1.
Hence (4.6) and (4.7) imply that (—1)’u, > o0, (—1)/ v, > —oc, as j - %
if at least one of the v; or u, is non-zero.

Since all u; =0, v, =0 it follows that the functions x and x*, y and y»*
are identical on the subset A= {4}, which has a cluster point at 1.
Hence x* and y* are discontinuous at 1.
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B. The Second Method of Proof

The second method is based on the following

LEMMA. There exists a continuous linear functional

@: C([0,1]x [0, 1]) > #

of the form

D= —c g(A1 A+ ¢y glra. Ag)+y glhy Ay)

+ Z (— 1) (g g(’iu 1 ’;‘/)+(‘2/+2g(/1-/+2* Ai)) (4.8)

jol

s

with positive coefficients ¢;, j> 1, and 3. _ | ¢, < o0 which annihilates the sub-
space

Wo={wiw is a function of the form (3.1) with bounded x. vi.

Proof. Let @ be of the form (4.8) with positive ¢, and Y ¢, < x. @
annihilates W, if and only if @ annihilates any function w e W, of the forms

x(5)—x,(1), sx () +ex(s), iz, (4.9)

where

(i) = 1, k=i
YT ki k>0,

The identities @(w)=0 for the functions w in (4.9) are equivalent to the
infinite system of linear equations

—ci+e3+e;=0
C1—cy—Cs5—Cg=0

—Co 1t Cy Ty =0, i23
2,¢3— 2503 — Ay =0

— Ayt Ayes+ Ay =0

D
>~
~
W
-+
~
b
A
o
.

2t A ot Ay 200 =0, 123,
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which is equivalent

CL=0C31 ¢4
Cr= Ayt Ascy (since 4, =1)
. :
c3=7 (43¢5 + 24¢4) (4.10)
A
C2i = Cargp1 T Cai g 24 iz2
1 , \ , .
(’:wx:} iy (A aCoipat AigaCoyat 2030 0a)s iz2

i vio ]

We now show that (4.10) has a positive solution {¢,}/_,. For any integer
N>2 there exists a unique positive finite sequence {c¢'™'}2"7* which
satisfies

and the identities in (4.10) for i< N.

By Cantor’s diagonalization process we find a positive sequence {c¢,}7,
with ¢,=1 which satisfies (4.10) for all i Clearly, >, ¢; < since
A, —h =2 "and 4, > 1,

This completes the proof of our lemma. ||

We use now our lemma to show that the function w* is not continuous.
Since @(w)=0 for the function w in Section 3, and &(w*)=0 we get by
(3.3) and (3.5)

P(f)=D(f+w)=D(F)
=2¢,+2¢, 420,42 ) ¢

On the other hand,

P(f)=D(f+w*)

which is valid if and only if f+w and f+w* and thus w and w* are
identical on the support of &, i.e., on

{(/117 ;t())v (’123 /1())-» (/AVI’ ;'I )v ()~/’+ 19 ;“j)’ (/Nt/‘+ 2 /A'/') /Z ] }

But this implies that w* is (like w) discontinuous at point (1, 1).
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5. REMARKS

Remark 1. In [ 1], M. v. Golitschek and E. W. Cheney prove that if G
and H arc 2-dimensional Haar subspaces containing the constants in ((S)
and C(T), respectively, then each element f of C(SxT) has a best
approximation in W which is continuous on the interior of 5 x 7. But this
is not true in the general case. Let 71 =10, 1]. We can show that

THEOREM L. There exisi G and H, that are 2-dimensional Haar sub-
spaces in C(S) andf C(T1), respectivelv, such that there is an element [ of
C(S x Ty which has no best approximation in W which is continuous on the
interior of Sx T1.

We need two lemmas for proving the result. These are elementary
and are given without proofs. Let H= {1/}, G= 1.5}, and let

G=span{g,. g.}, where

() 1, for s>0; (5) S5, for s>0;
S)= Sy =
gt 1+, for s<0, £ 572, for s<0.

LeMMa 1. The G defined above is a Haar subspace of C(S).

By applying the above result to the domain [0, 1] x [0, 1], we infer that
there is a continuous function f, on [0,1]x [0, 1] that has no best
approximation in I7,[0, 1 |® C[0, 1 ]+ C[0, 1 ]® I7T,[0, t ]. Let

f [)_{_I;, for (s,1)e[0,1]x[0,1];
POV 0+ 29 £o0 n+ Lsf(1 ) for (s.00e[—1,0]x [0, 1],

Clearly f'is an element of C(Sx T'1).
Let W, =/, ([0,1NQ@H+G®I,([0,1]), and let W,=/,(S)®H+
G, ([0.17)

LEmMMA 2. Let f. H, and G be defined above. Then the following equality
holds,

dist(f,,, W,)=dist(f. W),

Proof of Theorem 1. We shall prove that the function f defined above
has no best approximation in W, that is continuous on the interior of
Sx T1. In fact, if f has a best approximation in W, that is continuous in
the interior of S'x T'1, then f, has a best approximation in W, that is con-
tinuous in [0, 1) x (0, 1). This is just the case 2b of the proof of Theorem
in [4]. Thus we conclude that f, has a best approximation in W. This
contradicts the choice of f; that has no best approximation in W. ||
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Remark 2. A first counterexample for the failure of proximinality of the
tensor-product space {1.1) was submitted by the first author in Spring 1987
using the method B. The second author simplified it and added the
method A.
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