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An important open problem concerning the approximation of bivariate functions
by separable functions is whether the tensor-product subspace.

C( S) &! H i G &! C( Ti.

is proximinal in C(S x TJ, when Hand G are Haar subspaces of C(1 J and C(S).
respectively. In the present paper. we prove that. in general. this subspace is not
proximinal. (-, 1990 Academic Press. Inc

1. INTRODUCTTON

In a normed linear space, any clement possesses an element of best
approximation in any finite-dimensional subspace. This is often not the
case if the dimension of the subspace is infinite.

In this paper we consider the linear space C( S x T) of real-valued
continuous functions on the unit square [ - I, I] x [ ~ I, I] endowed with
the uniform norm, where S = T = [ - I, I].

It has been shown by Diliberto and Straus [3] that the subspace

[x(s) + y(r): x, y f= C[ - l. I])
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is proximinal in C(5 x T). The same is true for the subspaces
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{X(s)+/t .Ii Iyj(r):X'Yl, ... ,YnEC[-I, IJ}
(see Cheney and Respess [2 J).

In this paper we shall construe t a function / E C( 5 x T) whiclh does not
have an element of best approximation (with respect to the uniform norm)
in the subspace

~V= C(5) (8) H + G(8) C(T) ( 1.1 )

when Hand G are taken to be the 2-dimensional spaces of polynomials of
degree 1. In this case, the elements of W have the form

Earlier, one of the authors [4] has shown that any function / in C(5 x T)

has a best approximation in W if the partial derivative ?fjes exists at the
boundary points (I,f), fETand (Njas)(I,·)EC(T).

It is also known (see Cheney and v. Golitschek [I J) that the subspace

WI =1,(5)(8)H+G(8)I,(T)

is proximinal in I~ (5 x T). Furthermore, if Hand G are 2-dimensional
spaces of polynomials of degree 1. and / is an element of C(5 x T), it
possesses at least one best approximation lI' in If (5) (8) H + G ® l x (T) that
is continuous on the interior of 5 x T.

2. CONSTRUCTION OF THE FUNCTIO"i /

We start by defining the function / on the set If x If where If = {A;} / ()
is given by I' i = 1- 2< j=O, 1,2, ... We set

f(O,O)=O, /UI'O) 3,

/(0, I,d 3.

f(i}, 0) = 3,

flO, i}) = ~ 3,

fU j , 0) = flO, ;.J = 0, i??- 3,

/O.;,l. i )=(-I)I(1 1.,)+( I)'(I-I. i )

for j??-I, i j+ I, and i=j+2,

f().;';·i)=(~I)/(Aj I.J for j??-l,i??-j+3,

/U;, i'i) = ° for j??- 2, 1~ i ~ j.

We extend f onto [0, I Jx [0, 1J as follows.
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First, for j = 0, I, ...,/L i'/) is linear in each of the intervals i' l ~ .\' ~ i'i + I'

i? 0, and continuous on [0, I). Then, for each .I' E [0, I), f(s,·) is again
defined by linear interpolation of the values frs, i. /), frs, i.,. I) in the
intervals i , ~ (~i, I I' j? 0.

Finally we set

frO, I) = f( 1, 0) = f( I, I) = 0,

fk,I)=O for i?L

f( I, AI) = ( - I )/ (i'l - 1) for j? 1,

and again define f( 1" ) and f( " 1) by linear interpolation of the values in
the intervals i' l ~ (~i., t I' and ).i ~ .I' ~ ii + I' j? 0, i? 0, respectively.

It is easy to confirm that f is continuous on [0, 1] x [0, I], even
Lipschitzian, and that frs, 0) = -fro, .1'), 0 ~ .I' ~ I. Therefore, / can be
uniquely extended on the square [ - 1, 1] x [ - 1, 1] such that the identity

/(.1, () = -/(t, -.I), (s,t)ESxT (2.1 )

holds. Also we note that (2.1) implies /(.1', t) = /( - .1', - t) = -/( - (, .1'). The
function / is continuous on S x T, even Lipschitzian.

3. THE ApPROXIMATING FUNCTION

Let x and y be the bounded functions on [- I, 1], continuous on
( - 1, 1), which have the following properties.

x(O)=x(I)=O, X(i'i)=(-I)ll I, i? I,

x is linear on each interval [i'i' )'1 + 1], i? 0,

x is even on [ - 1, 1],

y is odd on [ - 1, 1] and y( () = - x( () for °~ (~ 1.

We define the approximating function by

\\,(.1, t) = xis) - x(() + sy(t) + (y(s),

Clearly, \I' has (as f) the property

(.I', t)ESX T. (3.1 )

We claim that

w( .1', t) = - w(t, - .I' ),

11/+\1'11 ~2

(.I', t) E S x T. (2.1 )'

(3.2 )
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is valid on [-1, IJ x [-1, I]. Indeed, we have for F :=f+ It'
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F(iJ, 0) = -2,

F(O, ),d = 2,

FU2' 0) =2,

F(O, ;'2) = -2,
(3.3)

FUI' ;'1) = 2, since ;'1 = 1/2 and y( 1 ) = -I

F(O,O)=O, F(ii,0)=wUi,O)=(-I)l+lfori~3, (3.4)

For j ~ 1, i = j + I, and i = j + 2, one gets

ll'(}.i' I'i) = (1 - 1,)( -1 )' + I - (1 + i.;)( - I )1 1 1

and thus

F().i' ;) = 2( -I )/,

Forj~ 1, i~j+3, we have

i = j + 1, i = j + 2, j ~ 1. (15)

IF()", ))1 = 1(- 1)i Pi -);) + w()." i;)1

=1(-I)i(1+;)+(-I)'+1 (1-)'1)1~2,

and for j ~ 2, I ~ i ~ j,

where the last inequality follows since )" ~); for i ~ j, Hence we have
proved that IF(s, t)1 ~ 2 on A x A.

On the boundary, we have

F( 1, 0) = F(O, I) = F( 1, 1) = 0,

FU" 1)=11'(1,,, 1)=0, i~ I,

IF(I, i/)1 = I( -I ji (/'i -1)+ 11'(1, ;)1

= 1(- I ) I (J.i - I) + 2( - I )i\

= II + )'j I < 2, j ~ 1.

By the definition (3.1), each of the functions 11'(" f), 0 ~ f ~ I, is linear in
)'i~S~'~'i+I' i~O, and each of the functions \1'(.1,'), O~s~ I, is linear in
i; ~ f ~ ;'1 + I' j ~ 0. Since f has the same property, it follows that

IF(s, t)1 ~ 2 on [0, 1] x [0, I].

Finally, since f and 11' have the property (2.1), we have even established
that on [ - 1, 1J x [ - I, 1J

Ilf+ wll = 2. (3.6 )
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4. FAILURE OF PROXIMINALITY

We will prove in two ways that there does not exist a function 1\* E W,
such that

11/ + 11'* 0( 2. (4.1 )

Suppose that there exists such a continuous w* Since / has the property
(2.1), there also exists a continuous function (again called w*) which
satisfies (2.1) and (4.1). Indeed, if 1\' is a continuous function such that

11/+ wll 0( 2, then define w* by setting

w*(s,I)=Hw(S,I)+W(-S, -1)-1\'(1, -.1')-11'(-1,.1')].

It follows that w*(s, I) = Ir*( -.I', - I) = - 1\'*(1, -.I) = - w*( -I, .1'). Since /
also has these properties from (2.1), we see easily that 11/+w*11 0(2. Let
w(s, I) = xo(s) + 1''(1(.1') + Yo(1) + SYI(I), then by definition of w*,

w*(s, I) = i {[xo(s) + x o( -.I) - Yo(s) - Yo( -s)J

- [xo(t)+xo(-I)- .\'o(l)-.\'o(-I)J

+ sex d I) + .I'd I) -- x d - I) - Y I ( - I) J

+ 1[x I (.1) + .I'd .1') - x d - .1') - Yd -I) J:

thus if we define

x*(s) = Hxo(S) + Xo( -.I) - .1'0(.1) - Yo( -.1')],

y*(s) = i [xd s )+ Yds) - XI( -.I') - YI( -.I)],

IV* is then of the form

w*(s, t) = x*(s) - x*(t) + sy*(t) + ty*(s), - 10( .I, to( 1 (4.2)

and x*EC[-I, IJ is even, Y*EC[-I, IJ is odd, hence y*(O)=O, and
without loss of generality, x*(O) = O.

There are two ways to show that w* cannot be continuous at
(.I', t) = (1, 1).

A. The First Method oj Proof

Let w be the function in Section 3 and consider the function::: := w - w*.
Because of (3.1) and (4.2), ::: is also of the form

:::(.1', t) = u(s) - u(l) + sV(I) + IV(s)

with bounded functions u and r.
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Let us denote 1l;:=Il(l,;) and 1',:=v(I,,). Then we have llo=Vo=O, and
(3.3), (3.5), (4.1) imply

,:-(A I • 0) ~O

,:-(A 2 • 0) ~ 0

(-I)/.:-()~,+2.I,,)~0. forj~l.

These inequalities are equivalent to

VI ~O.

':-(}.2' AI) = 11 2 -Ill + ;~2VI + 1'1 V2~ 0

which implies V 2 ~ O.

( - 1)' (Il j + 2 - U, + )~i+ 2 V, + I.iv, + 2) ~ 0,

( - 1)i + I (u i" 2 - Ili + I + I. i + 2 V," I + )'! + IV, + 2) ~ o.

The sum of (4.4) and (4.5) is

(4.3)

j~ I. (4.4)

j~ 1. (4.5)

which implies the inequalities

The inequality (4.4) implies

j ~ 1. (4.6)

i~ 1. (4.7)

It is now easy to show that all ui and vi have to vanish: By (4.3), (4,6),
(4.7) it follows (by induction) that ( - I) i vi ~ 0, (- 1 )J Uj ~ O. for all j ~ 1.
Hence (4.6) and (4.7) imply that ( - 1 )j u

j
---> 00, ( - 1 )J vi ---> - 00, as j --->00

if at least one of the v; or Ilj is non-zero.
Since all Ilj = O. v, = 0 it follows that the functions x and x*, y and y*

arc identical on the subset Ie = {/'i}:~ 0 which has a cluster point at I.
Hence x* and y* are discontinuous at I.
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B. The Second Method of' Proof'

The second method is based on the following

LEMMA. There exists a continuous linear fimctional

c[J: C( [0, 1] x [0, 1]) -+ ;;r

of' the flJrm

+ L (-I)'(c 2,tlg(}",I!,;"/)+C2i+2gU,t2,l,)) (4.8)
/ !

with positive coefficients c/, j? I, and L/~ I (j < Cfj which annihilates the suh­
space

WI) = { w: w is a function of the form (3.1 ) with hounded x, y }.

Proo{ Let c[J be of the form (4.8) with positive c/ and L c/ < x. c[J

annihilates WI) if and only if c[J annihilates any function w EO WI) of the forms

where

xi(s) - xi(t),

k = i:

k # i, k? O.

(4.9)

The identities c[J( w) = 0 for the functions H" in (4.9) are equivalent to the
infinite system of linear equations
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which is equivalent

("=(',+('4

('2 = ).2(', + ;.,c4 (since ;" =~)

347

We now show that (4.10) has a positive solution {C'},'~I' For any integer
N ~ 2 there exists a unique positive finite sequence {('~N)} ~N ~ 4 which
satisfies

and the identities in (4.10) for i ~ N.
By Cantor's diagonalization process we find a positive sequence (c, L"~ I

with ('0= 1 w~lich satisfies (4.10) for all i. Clearly, L/~I c,< x since
i j -;.j ,=2 I and ;'j ---> 1,

This completes the proof of our lemma. I

We use now our lemma to show that the function w* is not continuous.
Since </J( Ii') = 0 for the function I\' in Section 3, and </J( w*) = 0 we get by
(3.3) and (3.5)

</J(f) = </J(f+ w) = </J(F)

= 2(', + 2c, + 2c2+ 2 L i>
i = J

On the other hand,

</J(f) = </J(f + w*)

which is valid if and only if f + Ii" and f + 1\'* and thus wand 1\'* are
identical on the support of </J, i.e., on

But this implies that w* is (like w) discontinuous at point (1, 1).
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5. REMARKS

Remark 1. In [I J, M. v. Golitschek and E. W. Cheney prove that if G
and Hare 2-dimensional Haar subspaces containing the constants in C( S l
and C( T), respectively, then each element / of C( S x T) has a best
approximation in WI which is continuous on the interior of S x T. But this
is not true in the general case. Let Tl = [0. I l We can show that

THEOREM I. There exist G and H. that are 2-dimensional Haar suh­
spaces in C( S) andl C( TIl. respectireil .. such that there is an clement / ol
C( S x T I) which has no hest approximation in rt'l \\)Iich is continuous on the
interior ol S x T 1.

We need two lemmas for proving the result. These are elementary
and are given without proofs. Let H = {1, t}. G = [L s}. and let
G= span{ gl' g;,:' where

for s > 0;

for s < 0.

for s> 0;

for s < 0.

LEMMA 1. The G defined ahove is a Haar suhspace ol C( S ).

By applying the above result to the domain [0, I] x [0, I]. we infer that
there is a continuous function t;) on [0, I] x [0, I] that has no best
approximation in III [0, I] @ qo, I] + C[O, I] @ III [0, I l Let

for (s, t) E [0, I] x [0, I];

for (s,t)E[-I,O]x[O,ll

Clearly / is an element of C( S x T I ).
Let WI=I/([O, 1])@H+GEB/f([O,I]), and let Wi=I,(S)@H+

G@ I / ([0. I]).

LEMMA 2. Lell H, and G he defined ahove. Then lhe /o//Olring equality
holds.

Proof ol Theorem I. We shall prove that the function / defined above
has no best approximation in WI that is continuous on the interior of
SX T1. In fact, if/has a best approximation in Wi that is continuous in
the interior of Sx TI, then/;) has a best approximation in WI that is con­
tinuous in [0, I) x (0, I). This is just the case 2b of the proof of Theorem
in [4]. Thus we conclude that t;) has a best approximation in W. This
contradicts the choice of t;) that has no best approximation in W. I
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Rnnark 2. A first counterexample for the failure of proximinality of the
tensor-product space ( I.l ) was submitted by the first author in Spring 1987
using the method B. The second author simplified it and added the
method A.
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