On the Failure of Proximinality of Tensor-Product Subspaces

Guohui Feng
Mathematics Deparmen, Linterstey of Texas.
Austim, Texas 78712, U.S.A.
ANI)
M. v. Golitschek *
Inssitut für Angewandte Mathemath und Statistik der Unitersiät. 8700 Würzburg. Wex Germany
Communicated by E. W. Chene.

Received August 4. 1987; revised January 11, 1989

An important open problem coneerning the approximation of bivariate functions by separable functions is whether the tensor-product subspace,

$$
C(S) \otimes H+G \otimes C(T) .
$$

is proximinal in $C(S \times T)$, when H and G are Har subspaces of $C(T)$ and $C(S)$. respectively. In the present paper, we prove that, in general, this subspace is not proximinal. 1990 Academic Press. Inc

1. Introduction

In a normed linear space, any element possesses an element of best approximation in any finite-dimensional subspace. This is often not the case if the dimension of the subspace is infinite.

In this paper we consider the linear space $C(S \times T)$ of real-valued continuous functions on the unit square $[-1,1] \times[-1,1]$ endowed with the uniform norm, where $S=T=[-1,1]$.

It has been shown by Diliberto and Straus [3] that the subspace

$$
\{x(s)+y(t): x, y \in C[-1,1]\}
$$

* This author was supported by a NATO grant.
is proximinal in $C(S \times T)$. The same is true for the subspaces

$$
\left\{x(s)+\sum_{j=1}^{n} s^{j} \quad y_{j}(t): x, y_{1}, \ldots, y_{n} \in C[-1,1]\right\}
$$

(see Cheney and Respess [2]).
In this paper we shall construc t a function $f \in C(S \times T)$ which does not have an element of best approximation (with respect to the uniform norm) in the subspace

$$
\begin{equation*}
W=C(S) \otimes H+G \otimes C(T) \tag{1.1}
\end{equation*}
$$

when H and G are taken to be the 2 -dimensional spaces of polynomials of degree 1 . In this case, the elements of W have the form

$$
u(s, t)=x_{0}(s)+t x_{1}(s)+y_{0}(t)+s y_{1}(t), \quad \text { with } \quad x_{i} \in C(S), y_{i} \in C(T) \text {. }
$$

Earlier, one of the authors [4] has shown that any function f in $C(S \times T)$ has a best approximation in W if the partial derivative $\partial f / \partial s$ exists at the boundary points $(1, t), t \in T$ and $(\partial f / \partial s)(1, \cdot) \in C(T)$.

It is also known (see Cheney and v. Golitschek [1]) that the subspace

$$
W_{1}=l_{,}(S) \otimes H+G \otimes l_{\triangle}(T)
$$

is proximinal in $I_{\mathrm{x}}(S \times T)$. Furthermore, if H and G are 2 -dimensional spaces of polynomials of degree 1 , and f is an element of $C(S \times T)$, it possesses at least one best approximation w in $l_{x}(S) \otimes H+G \otimes l_{x}(T)$ that is continuous on the interior of $S \times T$.

2. Construction of the Function f

We start by defining the function f on the set $A \times A$ where $A=\left\{\lambda_{j}\right\}_{i=0}^{x}$ is given by $\dot{\lambda}_{j}=1-2^{j}, j=0,1,2, \ldots$ We set

$$
\begin{gathered}
f(0,0)=0, \quad f\left(\lambda_{1}, 0\right)=-3, \quad f\left(\lambda_{2}, 0\right)=3, \\
f\left(\lambda_{1}, \lambda_{1}\right)=3, \quad f\left(0, \lambda_{1}\right)=3, \quad f\left(0, \lambda_{2}\right)=-3, \\
f\left(\lambda_{i}, 0\right)=f\left(0, \lambda_{i}\right)=0, \quad i \geqslant 3, \\
f\left(\lambda_{i}, \lambda_{j}\right)=(-1)^{\prime}\left(1-\lambda_{i}\right)+(-1)^{i}\left(1-\lambda_{j}\right) \\
\text { for } j \geqslant 1, i=j+1, \text { and } i=j+2, \\
f\left(\lambda_{i}, \lambda_{j}\right)=(-1)^{j}\left(\lambda_{j}-\lambda_{i}\right) \quad \text { for } \quad j \geqslant 1, i \geqslant j+3, \\
f\left(\lambda_{i}, \lambda_{j}\right)=0 \quad \text { for } \quad j \geqslant 2,1 \leqslant i \leqslant j .
\end{gathered}
$$

We extend f onto $[0,1] \times[0,1]$ as follows.

First, for $j=0,1, \ldots, f\left(\cdot, \lambda_{j}\right)$ is linear in each of the intervals $\lambda_{i} \leqslant s \leqslant \lambda_{i+1}$, $i \geqslant 0$, and continuous on $[0,1)$. Then, for each $s \in[0,1), f(s, \cdot)$ is again defined by linear interpolation of the values $f\left(s, i_{i}\right), f\left(s, \lambda_{j-1}\right)$ in the intervals $i_{j} \leqslant t \leqslant i_{j+1}, j \geqslant 0$.

Finally we set

$$
\begin{aligned}
& f(0,1)=f(1,0)=f(1,1)=0 \\
& f\left(i_{i}, 1\right)=0 \quad \text { for } \quad i \geqslant 1 \\
& f\left(1, i_{j}\right)=(-1)^{j}\left(i_{j}-1\right) \quad \text { for } \quad j \geqslant 1
\end{aligned}
$$

and again define $f(1, \cdot)$ and $f(\cdot, 1)$ by linear interpolation of the values in the intervals $\hat{\lambda}_{j} \leqslant t \leqslant \hat{\lambda}_{i+1}$, and $\lambda_{i} \leqslant s \leqslant \hat{\lambda}_{i+1}, j \geqslant 0, i \geqslant 0$, respectively.

It is easy to confirm that f is continuous on $[0,1] \times[0,1]$, even Lipschitzian, and that $f(s, 0)=-f(0, s), 0 \leqslant s \leqslant 1$. Therefore, f can be uniquely extended on the square $[-1,1] \times[-1,1]$ such that the identity

$$
\begin{equation*}
f(s, t)=-f(t,-s), \quad(s, t) \in S \times T \tag{2.1}
\end{equation*}
$$

holds. Also we note that (2.1) implies $f(s, t)=f(-s,-t)=-f(-t, s)$. The function f is continuous on $S \times T$, even Lipschitzian.

3. The Approximating Function

Let x and y be the bounded functions on $[-1,1]$, continuous on $(-1,1)$, which have the following properties.

$$
\begin{aligned}
& x(0)=x(1)=0, x\left(\lambda_{i}\right)=(-1)^{i+1}, i \geqslant 1, \\
& x \text { is linear on each interval }\left[i_{i}, \lambda_{i+1}\right], i \geqslant 0, \\
& x \text { is even on }[-1,1], \\
& y \text { is odd on }[-1,1] \text { and } y(t)=-x(t) \text { for } 0 \leqslant t \leqslant 1 .
\end{aligned}
$$

We define the approximating function by

$$
\begin{equation*}
w(s, t)=x(s)-x(t)+s y(t)+t y(s), \quad(s, t) \in S \times T . \tag{3.1}
\end{equation*}
$$

Clearly, w has (as f) the property

$$
\begin{equation*}
w(s, t)=-w(t,-s), \quad(s, t) \in S \times T . \tag{2.1}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\|f+w\| \leqslant 2 \tag{3.2}
\end{equation*}
$$

is valid on $[-1,1] \times[-1,1]$. Indeed, we have for $F:=f+w$

$$
\begin{gather*}
F\left(\lambda_{1}, 0\right)=-2, \quad F\left(\lambda_{2}, 0\right)=2, \tag{3.3}\\
F\left(0, \lambda_{1}\right)=2, \quad F\left(0, \lambda_{2}\right)=-2, \\
F\left(\lambda_{1}, \lambda_{1}\right)=2, \quad \text { since } \lambda_{1}=1 / 2 \text { and } y\left(\lambda_{1}\right)=-1 \\
F(0,0)=0, \quad F\left(\lambda_{i}, 0\right)=w\left(\lambda_{i}, 0\right)=(-1)^{i+1} \text { for } i \geqslant 3 . \tag{3.4}
\end{gather*}
$$

For $j \geqslant 1, i=j+1$, and $i=j+2$, one gets

$$
w\left(i_{i}, \lambda_{j}\right)=\left(1-i_{j}\right)(-1)^{i+1}-\left(1+i_{i}\right)(-1)^{j+1}
$$

and thus

$$
\begin{equation*}
F\left(\lambda_{i}, i_{j}\right)=2(-1)^{j}, \quad i=j+1, i=j+2, j \geqslant 1 . \tag{3.5}
\end{equation*}
$$

For $j \geqslant 1, i \geqslant j+3$, we have

$$
\begin{aligned}
\left|F\left(\lambda_{i}, \lambda_{j}\right)\right| & =\left|(-1)^{j}\left(\lambda_{j}-\lambda_{i}\right)+w\left(\lambda_{i}, i_{j}\right)\right| \\
& =\left|(-1)^{j}\left(1+\lambda_{j}\right)+(-1)^{i+1}\left(1-\lambda_{j}\right)\right| \leqslant 2,
\end{aligned}
$$

and for $j \geqslant 2,1 \leqslant i \leqslant j$,

$$
\left|F\left(\lambda_{i}, \lambda_{j}\right)\right|=\left|w\left(\lambda_{i}, \lambda_{j}\right)\right| \leqslant 1-\lambda_{j}+1+\lambda_{i} \leqslant 2 .
$$

where the last inequality follows since $\lambda_{i} \leqslant \lambda_{j}$ for $i \leqslant j$. Hence we have proved that $|F(s, t)| \leqslant 2$ on $A \times A$.

On the boundary, we have

$$
\begin{aligned}
F(1,0) & =F(0,1)=F(1,1)=0, \\
F\left(\lambda_{i}, 1\right) & =w\left(\lambda_{i}, 1\right)=0, \quad i \geqslant 1, \\
\left|F\left(1, \lambda_{j}\right)\right| & =\left|(-1)^{j}\left(\lambda_{j}-1\right)+w\left(1, \lambda_{j}\right)\right| \\
& =\left|(-1)^{j}\left(\lambda_{j}-1\right)+2(-1)^{j}\right| \\
& =\left|1+\lambda_{j}\right|<2, \quad j \geqslant 1 .
\end{aligned}
$$

By the definition (3.1), each of the functions $w(\cdot, t), 0 \leqslant t \leqslant 1$, is linear in $\lambda_{i} \leqslant s \leqslant \lambda_{i+1}, i \geqslant 0$, and each of the functions $w(s, \cdot), 0 \leqslant s \leqslant 1$, is linear in $\lambda_{i} \leqslant t \leqslant \lambda_{j+1}, j \geqslant 0$. Since f has the same property, it follows that

$$
|F(s, t)| \leqslant 2 \quad \text { on } \quad[0,1] \times[0,1] .
$$

Finally, since f and w have the property (2.1), we have even established that on $[-1,1] \times[-1,1]$

$$
\begin{equation*}
\|f+w\|=2 \tag{3.6}
\end{equation*}
$$

4. Failure of Proximinality

We will prove in two ways that there does not exist a function $\mathfrak{w}^{*} \in \mathscr{W}$. such that

$$
\begin{equation*}
\left\|f+w^{*}\right\| \leqslant 2 \tag{4.1}
\end{equation*}
$$

Suppose that there exists such a continuous w^{*}. Since f has the property (2.1), there also exists a continuous function (again called w^{*}) which satisfies (2.1) and (4.1). Indeed, if w is a continuous function such that $\left\|f+w^{\prime}\right\| \leqslant 2$, then define w^{*} by setting

$$
w^{*}(s, t)=\frac{1}{4}[w(s, t)+w(-s,-t)-w(t,-s)-w(-t, s)] .
$$

It follows that $w^{*}(s, t)=w^{*}(-s,-t)=-w^{*}(t,-s)=-w^{*}(-t, s)$. Since f also has these properties from (2.1), we see easily that $\left\|f+w^{*}\right\| \leqslant 2$. Let $w(s, t)=x_{0}(s)+t x_{1}(s)+y_{0}(t)+s y_{1}(t)$, then by definition of w^{*},

$$
\begin{aligned}
u^{*}(s, t)= & \frac{1}{4}\left\{\left[x_{0}(s)+x_{0}(-s)-y_{0}(s)-y_{0}(-s)\right]\right. \\
& -\left[x_{0}(t)+x_{0}(-t)-y_{1}(t)-y_{0}(-t)\right] \\
& +s\left[x_{1}(t)+y_{1}(t)-x_{1}(-t)-y_{1}(-t)\right] \\
& +t\left[x_{1}(s)+y_{1}(s)-x_{1}(-s)-y_{1}(-s)\right]
\end{aligned}
$$

thus if we define

$$
\begin{aligned}
& x^{*}(s)=\frac{1}{4}\left[x_{0}(s)+x_{0}(-s)-y_{0}(s)-y_{0}(-s)\right], \\
& y^{*}(s)=\frac{1}{4}\left[x_{1}(s)+y_{1}(s)-x_{1}(-s)-y_{1}(-s)\right],
\end{aligned}
$$

w^{*} is then of the form

$$
\begin{equation*}
w^{*}(s, t)=x^{*}(s)-x^{*}(t)+s y^{*}(t)+t y^{*}(s), \quad-1 \leqslant s, t \leqslant 1 \tag{4.2}
\end{equation*}
$$

and $x^{*} \in C[-1,1]$ is even, $y^{*} \in C[-1,1]$ is odd, hence $y^{*}(0)=0$, and without loss of generality, $x^{*}(0)=0$.

There are two ways to show that w^{*} cannot be continuous at $(s, t)=(1,1)$.

A. The First Method of Proof

Let w be the function in Section 3 and consider the function $z:=w-w^{*}$. Because of (3.1) and (4.2), z is also of the form

$$
z(s, t)=u(s)-u(t)+s v(t)+w(s)
$$

with bounded functions u and v.

Let us denote $u_{i}:=u\left(\hat{\lambda}_{i}\right)$ and $v_{j}:=v\left(\hat{\iota}_{j}\right)$. Then we have $u_{0}=v_{0}=0$, and (3.3). (3.5), (4.1) imply

$$
\begin{aligned}
& z\left(\lambda_{1}, 0\right) \leqslant 0 \\
& z\left(\lambda_{2}, 0\right) \geqslant 0 \\
&=\left(\lambda_{1}, \lambda_{1}\right) \geqslant 0 \\
&(-1)^{\prime} z\left(\lambda_{j+1}, \lambda_{j}\right) \geqslant 0, \quad(-1)^{j} z\left(\lambda_{j+2}, \lambda_{j}\right) \geqslant 0, \text { for } j \geqslant 1 .
\end{aligned}
$$

These inequalities are equivalent to

$$
\begin{align*}
& u_{1} \leqslant 0 \\
& u_{2} \geqslant 0 \\
& v_{1} \geqslant 0 \tag{4.3}\\
& z\left(\lambda_{2}, \lambda_{1}\right)=u_{2}-u_{1}+\lambda_{2} v_{1}+\lambda_{1} v_{2} \leqslant 0
\end{align*}
$$

which implies $v_{2} \leqslant 0$.

$$
\begin{aligned}
(-1)^{j}\left(u_{j+2}-u_{j}+\lambda_{j+2} v_{j}+\lambda_{j} v_{j+2}\right) \geqslant 0, & j \geqslant 1, \\
(-1)^{j+1}\left(u_{j+2}-u_{j+1}+\lambda_{j+2} v_{j+1}+\lambda_{j+1} v_{j+2}\right) \geqslant 0, & j \geqslant 1 .
\end{aligned}
$$

The sum of (4.4) and (4.5) is

$$
(-1)^{j}\left(u_{j+1}-u_{j}+\lambda_{j+2} v_{j}-\lambda_{j+2} v_{j+1}+\left[\lambda_{j}-\lambda_{j+1}\right] v_{j+2}\right) \geqslant 0,
$$

which implies the inequalities

$$
\begin{equation*}
(-1)^{j} v_{j+2} \leqslant \frac{(-1)^{j}}{\lambda_{j+1}-\lambda_{j}}\left(u_{j+1}-u_{j}+\lambda_{j+2} v_{j}-\lambda_{j+2} v_{j+1}\right), \quad j \geqslant 1 . \tag{4.6}
\end{equation*}
$$

The inequality (4.4) implies

$$
\begin{equation*}
(-1)^{j} u_{j+2} \geqslant(-1)^{j}\left(u_{j}-i_{j+2} v_{j}-i_{j} v_{j+2}\right), \quad j \geqslant 1 . \tag{4.7}
\end{equation*}
$$

It is now easy to show that all u_{j} and v_{j} have to vanish: By (4.3), (4.6), (4.7) it follows (by induction) that $(-1)^{j} v_{j} \leqslant 0,(-1)^{j} u_{j} \geqslant 0$, for all $j \geqslant 1$. Hence (4.6) and (4.7) imply that (-1$)^{j} u_{j} \rightarrow \infty,(-1)^{j} v_{j} \rightarrow-\infty$, as $j \rightarrow \infty$ if at least one of the v_{i} or u_{j} is non-zero.

Since all $u_{j}=0, v_{j}=0$ it follows that the functions x and x^{*}, y and y^{*} are identical on the subset $\lambda=\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ which has a cluster point at 1 . Hence x^{*} and y^{*} are discontinuous at 1 .

B. The Second Method of Proof

The second method is based on the following

Lemma. There exists a continuous linear functional

$$
\Phi: C([0,1] \times[0,1]) \rightarrow \mathscr{A}
$$

of the form

$$
\begin{align*}
\Phi= & -c_{1} g\left(\lambda_{1}, \lambda_{0}\right)+c_{1} g\left(i_{2}, i_{0}\right)+c_{2} g\left(i_{1}, \lambda_{1}\right) \\
& +\sum_{j=1}^{\infty}(-1)^{j}\left(c_{2 i+1} g\left(i_{j+1}, i_{j}\right)+i_{2 j+2} g\left(i_{i+2}, \lambda_{i}\right)\right) \tag{4.8}
\end{align*}
$$

with positive coefficients $c_{j}, j \geqslant 1$, and $\sum_{j=1} c_{j}<\infty$ which annihilates the subspace

$$
W_{0}=\{w: w \text { is a function of the form (3.1) with bounded } x, y\}
$$

Proof. Let Φ be of the form (4.8) with positive c_{i} and $\sum c_{j}<x . \Phi$ annihilates W_{0} if and only if Φ annihilates any function $w \in W_{0}$ of the forms

$$
\begin{equation*}
x_{i}(s)-x_{i}(t), \quad s x_{i}(t)+t x_{i}(s), i \geqslant 1 \tag{4.9}
\end{equation*}
$$

where

$$
x_{i}\left(i_{k}\right)= \begin{cases}1, & k=i \\ 0, & k \neq i, k \geqslant 0\end{cases}
$$

The identities $\Phi(w)=0$ for the functions w in (4.9) are equivalent to the infinite system of linear equations

$$
\begin{aligned}
-c_{1}+c_{3}+c_{4} & =0 \\
c_{1}-c_{3}-c_{5}-c_{6} & =0 \\
-c_{2 i} \quad 1+c_{2 i}-c_{2 i+1}-c_{2 i+2} & =0, \quad i \geqslant 3 \\
2 \lambda_{1} c_{2}-\lambda_{2} c_{3}-\lambda_{3} c_{4} & =0 \\
-\lambda_{1} c_{3}+\lambda_{3} c_{5}+\lambda_{4} c_{6} & =0 \\
-\lambda_{i} \quad c_{2 i}+\lambda_{i-2} c_{2 i}+\lambda_{i+1} c_{2 i+1}+\lambda_{i+2} c_{2 i+2} & =0, \quad i \geqslant 3,
\end{aligned}
$$

which is equivalent

$$
\begin{align*}
c_{1} & =c_{3}+c_{4} \\
c_{2} & =\lambda_{2} c_{3}+\lambda_{3} c_{4} \quad\left(\text { since } \lambda_{1}=\frac{1}{2}\right) \\
c_{3} & =\frac{1}{\lambda_{1}}\left(\lambda_{3} c_{5}+\lambda_{4} c_{6}\right) \tag{4.10}\\
c_{2 i} & =c_{2 i+1}+c_{2 i+2}, \quad i \geqslant 2 \\
c_{2 i+1} & =\frac{1}{\lambda_{i}-\lambda_{i-1}}\left(\lambda_{i-1} c_{2 i+2}+\lambda_{i+2} c_{2 i+3}+\lambda_{i+3} c_{2 i+4}\right), \quad i \geqslant 2 .
\end{align*}
$$

We now show that (4.10) has a positive solution $\left\{c_{i}\right\}_{i=1}^{*}$. For any integer $N \geqslant 2$ there exists a unique positive finite sequence $\left\{c_{v}^{(N)}\right\}_{n}^{2 N+4}$ which satisfies

$$
c_{2 N+2}^{(N)}=c_{2 N+3}^{(N)}=c_{2 N+4}^{(N)}>0, \quad c_{1}^{(N)}=1
$$

and the identities in (4.10) for $i \leqslant N$.
By Cantor's diagonalization process we find a positive sequence $\left\{c_{i}\right\}_{i=1}^{\infty}$ with $c_{0}=1$ witich satisfies (4.10) for all i. Clearly, $\sum_{i=1}^{x} c_{i}<x$ since $\lambda_{i}-\lambda_{i-1}=2^{i}$ and $\lambda_{i} \rightarrow 1$,

This completes the proof of our lemma.

We use now our lemma to show that the function w^{*} is not continuous. Since $\Phi(w)=0$ for the function w in Section 3, and $\Phi\left(w^{*}\right)=0$ we get by (3.3) and (3.5)

$$
\begin{aligned}
\Phi(f) & =\Phi(f+w)=\Phi(F) \\
& =2 c_{1}+2 c_{1}+2 c_{2}+2 \sum_{j=3}^{x} c_{i}
\end{aligned}
$$

On the other hand,

$$
\Phi(f)=\Phi\left(f+w^{*}\right)
$$

which is valid if and only if $f+w^{*}$ and $f+w^{*}$ and thus w and w^{*} are identical on the support of Φ, i.e., on

$$
\left\{\left(\lambda_{1}, \lambda_{0}\right),\left(\lambda_{2}, \lambda_{0}\right),\left(\lambda_{1}, \lambda_{1}\right),\left(\lambda_{j+1}, \lambda_{j}\right),\left(\lambda_{j+2}, \lambda_{j}\right) j \geqslant 1\right\} .
$$

But this implies that w^{*} is (like w) discontinuous at point $(1,1)$.

5. Remarks

Remark 1. In [1], M. v. Golitschek and E. W. Cheney prove that if G and H are 2-dimensional Haar subspaces containing the constants in $C(S)$ and $C(T)$, respectively, then each element f of $C(S \times T)$ has a best approximation in $W_{\text {, }}$ which is continuous on the interior of $S \times T$. But this is not true in the general case. Let $T 1=[0,1]$. We can show that

Theorem 1. There exist \bar{G} and H, that are 2-dimensional Haar suhspaces in $C(S)$ andf $C(T 1)$, respectivels, such that there is an element f of $C(S \times T 1)$ which has no best approximation in \bar{W}_{1} which is continuous on the interior of $S \times T 1$.

We need two lemmas for proving the result. These are elementary and are given without proofs. Let $H=\{1, t\}, G=\{1, s\}$, and let $\bar{G}=\operatorname{span}\left\{g_{1}, g_{2}\right\}$, where

$$
g_{1}(s)=\left\{\begin{array}{ll}
1, & \text { for } \quad s>0 ; \\
1+s, & \text { for } \quad s<0,
\end{array} \quad g_{2}(s)= \begin{cases}s, & \text { for } s>0 \\
s / 2, & \text { for } \quad s<0\end{cases}\right.
$$

Lemma 1. The \bar{G} defined above is a Haar subspace of $C(S)$.
By applying the above result to the domain $[0,1] \times[0,1]$, we infer that there is a continuous function f_{0} on $[0,1] \times[0,1]$ that has no best approximation in $\Pi_{1}[0,1] \otimes C[0,1]+C[0,1] \otimes \Pi_{1}[0,1]$. Let

$$
f(s, t)= \begin{cases}f_{0} & \text { for }(s, t) \in[0,1] \times[0,1] \\ \left(1+\frac{1}{2} s\right) f_{0}(0, t)+\frac{1}{2} s f_{0}(1 . t) & \text { for }(s, t) \in[-1,0] \times[0,1] .\end{cases}
$$

Clearly f is an element of $C(S \times T 1)$.
Let $W_{1}=l,([0,1]) \otimes H+G \oplus l,([0,1])$, and let $\bar{W}_{1}=l,(S) \otimes H+$ $\bar{G} \otimes l_{,}([0,1])$.

Lemma 2. Let f, H, and \bar{G} be defined above. Then the following equality holds,

$$
\operatorname{dist}\left(f_{0}, W_{1}\right)=\operatorname{dist}\left(f, \bar{W}_{1}\right)
$$

Proof of Theorem 1. We shall prove that the function f defined above has no best approximation in \bar{W}_{1} that is continuous on the interior of $S \times T 1$. In fact, if f has a best approximation in \bar{W}_{1} that is continuous in the interior of $S \times T 1$, then f_{0} has a best approximation in W_{1} that is continuous in $[0,1) \times(0,1)$. This is just the case $2 b$ of the proof of Theorem in [4]. Thus we conclude that f_{0} has a best approximation in W. This contradicts the choice of f_{0} that has no best approximation in W.

Remark 2. A first counterexample for the failure of proximinality of the tensor-product space (1.1) was submitted by the first author in Spring 1987 using the method B. The second author simplified it and added the method A .

Acknowledgment

The authors appreciate the help of Professor E. W. Cheney, who contributed constructive comments on this paper.

Reffrences

1. M. v. Golitschek and E. W. Cheney, The best approximation of bivariate functions by separable functions, Contemp. Math. 21 (1983), 125-136.
2. J. R. Respess and E. W. Chfnfy, Best approximation problems in tensor product spaces, Pacific J. Math. 102 (1982), 437446.
3. S. P. Dilmerto and E. G. Stralss, On the approximation of a function of several variables by the sum of functions of fewer variables, Pacific J. Math. 1 (1951). 195-210.
4. M. v. Golitschek, On the existence of continuous best approximations in tensor-product subspaces of univariate functions, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), pp. 475-481. Academic Press. New York, 1983.
